Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments
نویسندگان
چکیده
Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University– NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynopticscale dynamics. It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial resolutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimilation) for both observed and unobserved variables including zonal and meridional winds, temperature, and pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged rootmean-square error after 24-h assimilation is 1.0–1.5 m s 1 for winds and 1.0 K for temperature, which is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is likely the case when real observations are assimilated.
منابع مشابه
Tests of an Ensemble Kalman Filter for Mesoscale and Regional-scale Data Assimilation. Part IV: Comparison with 3DVar in a Month-long Experiment
In previous works of this series study, an ensemble Kalman filter (EnKF) has been demonstrated to be promising for mesoscale and regional scale data assimilation in increasingly realistic environments. Parts I and II examined the performance of the EnKF by assimilating simulated observations under both perfect-and imperfect-model assumptions. Part III explored the application of the EnKF to a r...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملInformation Flow in an Atmospheric Model and Data Assimilation
Title of dissertation: INFORMATION FLOW IN AN ATMOSPHERIC MODEL AND DATA ASSIMILATION Young-noh Yoon, Doctor of Philosophy, 2011 Dissertation directed by: Professor Edward Ott Department of Physics Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle ...
متن کاملMulti-Scale EnKF Assimilation of Radar and Conventional Observations and Ensemble Forecasting for a Tornadic Mesoscale Convective System
In recent studies, the authors have successfully demonstrated the ability of an ensemble Kalman filter (EnKF), assimilating real radar observations, to produce skillful analyses and subsequent ensemble-based probabilistic forecasts for a tornadic mesoscale convective system (MCS) that occurred over Oklahoma and Texas on 9 May 2007. The current study expands upon this prior work, performing expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004